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A generalized Robertson–Walker (GRW) space-time is the generalization of the classi-
cal Robertson–Walker space-time. In the present paper, we show that a Ricci simple
manifold with vanishing divergence of the conformal curvature tensor admits a proper
concircular vector field and it is necessarily a GRW space-time. Further, we show that
a stiff matter perfect fluid space-time or a mass-less scalar field with time-like gradient
and with divergence-free Weyl tensor are GRW space-times.
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1. Introduction

An n-dimensional generalized Robertson–Walker (GRW) space-time, with n ≥ 3 is
a Lorentzian manifold which is a warped product of an open interval I of R and an
(n − 1)-dimensional Riemannian manifold. GRW space-times have applications in
inhomogeneous space-times admitting an isotropic radiation (see [23]).

An n-dimensional (n ≥ 3) Lorentzian manifold is named generalized Robertson–
Walker space-time if the metric takes the local shape:

ds2 = −(dt)2 + q(t)2g∗αβdx
αdxβ ,
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where g∗αβ = g∗αβ(x
γ) are functions of xγ only (α, β, γ = 2, 3, . . . , n) and q is a

function of t only. If g∗αβ has dimension three and has constant curvature, the space
is a Robertson–Walker space-time.

For more details about GRW space-times among others, we may mention [1, 2,
4, 7, 13, 22–24]. It is well-known that any Robertson–Walker space-time is a perfect
fluid space-time [20] and that in n = 4 dimensions a GRW space-time is a perfect
fluid if and only if it is a Robertson–Walker space-time (see for example [17], Sec. 4).

A vector field uj on an n-dimensional semi-Riemannian manifold (M, g) is called
torse-forming [19, 21, 25, 30] if

∇kuj = ωkuj + fgjk, (1.1)

where f is a scalar function and ωk is a one-form. The same vector is named concir-
cular [29] if the one-form ωk is a gradient (one or locally a gradient), that is, there
exists a scalar function σ defined on a suitable coordinate domain U of M such that
ωk = ∇kσ on this set. Let M be a Lorentzian manifold with the Lorentzian metric
g of signature (−,+,+, · · · ,+) and ∇ denote the semi-Riemannian connection. In
a Lorentzian manifold uj is a time-like vector field. Concircular vector fields play
an important role in the theory of projective and conformal transformations. Also,
such vector fields have applications in general theory of relativity.

For general reference of pseudo-Riemannian geometry, we refer to [10, 20].
Let (M, g) be a Lorentzian manifold of dimension n(n > 3) and Chijk be the

conformal curvature tensor of type (1, 3) on the Lorentzian manifold M, which is
given by

Chijk = Rhijk −
1

n− 2
[Rhkgij −Rhj gik +Rijδ

h
k −Rikδ

h
j ]

+
R

(n− 1)(n− 2)
[gijδhk − gikδ

h
j ],

where Rhijk, Rij and R denote respectively the curvature tensor, (0, 2) Ricci tensor
and scalar curvature.

We assume that in a Lorentzian manifold (M, g)(n > 3), the divergence of the
conformal curvature tensor vanishes, that is, ∇mC

m
ijk = 0 and the Ricci tensor Rij

satisfies the condition

Rij = −Ruiuj, (1.2)

where ui is a unit time-like vector field. In such a case, the manifold is termed
Ricci simple [12]. As a particular case of ∇mC

m
ijk = 0, we may have Chijk = 0, that

is, a conformally flat manifold. For the geometric meaning of a conformally flat
Riemannian manifolds, see [31].

The condition (1.2) has a geometric meaning that a unit time-like vector ui
becomes a principal vector of the Ricci operator. Also this condition is time-like
partial Einstein manifolds, i.e. it is Einstein with respect to the time-like subbundle.
Condition (1.2) plays an important role in general relativity. Let (M, g) be an n-
dimensional (n > 3) Lorentzian manifold equipped with Einstein’s field equation
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without cosmologigal constant, that is,

Rij − R

2
gij = κTij (1.3)

being κ = 8πG
c4 the Einstein’s gravitational constant and Tij the energy–momentum

tensor (see [27] and [14]) describing the matter content of the space-time. If the
condition (1.2) is fulfilled, then inserting in Einstein’s equations, we infer

Tij =
2T
n− 2

uiuj +
T

n− 2
gij (1.4)

being T = gijTij and R = 2κT
2−n . This is the expression of a perfect fluid energy–

momentum tensor (see [18, 27, 14, 28]) Tij = (µ+ p)uiuj + pgij, where µ = T
n−2 is

the energy density and p = T
n−2 is the isotropic pressure and uj the fluid velocity.

Usually in a perfect fluid p and µ are related by an equation of state of the form
p = p(µ,Θ), being Θ the absolute temperature. In the situation in which the state
equation reduces to the form p = p(µ) the fluid is named isentropic. In our case,
p = µ and the perfect fluid is termed stiff matter (see [27], p. 66). Conversely, if an
energy–momentum perfect fluid form is specified, then the Ricci tensor is written in
the form Rij = κ(µ+p)uiuj+

κgij

2−n (p−µ); in this way a stiff matter model gives rise
to a Ricci tensor of the form Rij = −Ruiuj with R = −2κµ. A stiff matter equation
of state was firstly introduced by Zel’dovich in [32] and used by the same author
in his cosmological model exposed in [33]; in this paper the primordial universe is
assumed to be a cold gas of baryons. For a stiff matter fluid, the sound velocity is
equal to the velocity of the light [32]. For recent results on the stiff matter era of the
universe see for example [9]. The stiff matter era preceded the radiation era, with
p = µ

3 , the dust matter era, with p = 0 and the dark matter era, with p = −µ [9]. It
also occurs in certain cosmological models where dark matter is made of relativistic
self-graviting Bose–Einstein condensate [8].

Energy–momentum tensor of perfect fluid type also arise from scalar field space-
times with time-like gradient ∇jψ; stiff matter models are recovered from mass-less
fields (see [27], p. 63). In fact the energy–momentum of a real spin-0 field ψ is
defined by (see [18, 28])

Tij = (∇iψ)(∇jψ) − 1
2
gij [(∇kψ)(∇kψ) + V (ψ)], (1.5)

where V (ψ) is a potential that models the self-interaction between particles, whose
simplest form is V (ψ) = m2

2�2ψ
2 (m is the particle mass and � is the Planck’s

constant divided by 2π). In the case of mass-less time-like gradient field setting
uk = ∇kψ√

|(∇jψ)(∇jψ)| we have a perfect fluid of the form

Tkl = |(∇jψ)(∇jψ)|ukul + 1
2
gkl|(∇jψ)(∇jψ)| (1.6)

with p = µ = 1
2 |(∇jψ)(∇jψ)|.
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In a recent paper [11], Chen proved that an n-dimensional Lorentzian manifold
with n ≥ 3 is a generalized Robertson–Walker space-time if and only if it admits a
time-like concircular vector field of the form ∇kXi = ρgik.

The purpose of this note is to characterize a GRW space-time by proving the
following theorem:

Theorem 1.1. Let (M, g) be an n-(> 3) dimensional Lorentzian manifold. If the
Ricci tensor has the form Rij = −Ruiuj and the divergence of the conformal cur-
vature tensor vanishes, that is, ∇mC

m
jkl = 0, then there exists a suitable coordinate

domain U of M such that on this set the space is a GRW space-time with Einstein
fibers.

In view of the aforementioned considerations about stiff matter models and
mass-less scalar fields with time-like gradient ∇jψ we can state the following results.

Corollary 1.1. Let (M, g) be an n-dimensional (n > 3) perfect fluid space-time
subjected to the condition p = µ. If the divergence of the conformal curvature tensor
vanishes, then there exists a suitable coordinate domain U of M such that on this
set the space is a GRW space-time with Einstein fibers.

Corollary 1.2. Let (M, g) be an n-dimensional (n > 3) mass-less scalar field
space-time with time-like gradient ∇jψ. If the divergence of the conformal curvature
tensor vanishes, then there exists a suitable coordinate domain U of M such that
on this set the space is a GRW space-time with Einstein fibers.

Remark 1.1. In [26] the solutions of Einstein’s equations are studied under the
following assumptions: (1) the space is a perfect fluid 4-dimensional space-time; (2)
the divergence of the conformal curvature tensor vanishes, that is, ∇mC

m
jkl = 0; (3)

the space is equipped with a state equation p = p(µ). It was thus proved that the
space-time is conformally flat and the metric is a Robertson–Walker metric. The
flow is irrotational, shear free and geodesic. It should be noted that our Theorem 1.1
is proven in any dimensions and without using a state equation.

2. Proof of the Main Theorem

To prove our main theorem, we first prove the following key lemma.

Lemma 2.1. Let (M, g) be an n-dimensional (n > 3) Lorentzian manifold admit-
ting a unit concircular vector field of the form (1.1); then there exists a suitable
coordinate domain U of M such that on this set the space is a GRW space-time.

Proof. Let us assume that a Lorentzian manifold is equipped with a unit time-like
concircular vector field of the form

∇kuj = fgjk + ωkuj, (2.1)

where ωk is a closed one-form. It should be noted that for unit time-like torseforming
or concircular vectors, it is ωk = fuk (see [19]).
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Now if ωk is closed, then there exists a scalar function σ defined on a suitable
coordinate domain U of M such that ωk = ∇kσ on this set.

Setting Xj = uje
−σ on this set we have

∇kXj = e−σ(∇kuj − uj∇kσ)

= e−σ[(∇kσ)uj + fgjk − uj(∇kσ)]

= (e−σf)gjk

and consequently

∇kXj = ρgjk,

where ρ = e−σf is a scalar function and XjX
j = −e−2σ < 0 is a time-like vector.

The previous equation can be written as

∇kXj + ∇jXk = 2ρgjk,

that is, Xj is a conformal Killing vector. The previous rescaling was suggested
in [19].

In a recent paper [11], Chen has shown that the presence of a time-like concircu-
lar vector of the form ∇iXj = ρgij is equivalent to have a GRW space-time. Then if
an n-dimensional (n > 3) Lorentzian manifold is equipped with a unit concircular
vector field of the form ∇kuj = fgjk+ωkuj, then there exists a suitable coordinate
domain U of M such that on this set the space is a GRW space-time.

Proof of Theorem 1.1. Let us assume that (M, g) be a Lorentzian manifold of
dimension n(n > 3) with Lorentzian metric g. The divergence of the conformal
curvature tensor vanishes, that is, ∇mC

m
jkl = 0 implies

∇kRjl −∇lRjk =
1

2(n− 1)
(gij∇kR− gjk∇lR).

Now we write the covariant derivative of (1.2) and insert in the previous equation
to obtain

−(∇kR)ujul −R(∇kuj)ul −R(∇kul)uj

+ (∇lR)ujuk +R(∇luj)uk +R(∇luk)uj

=
1

2(n− 1)
(gij∇kR− gjk∇lR). (2.2)

Transvecting (2.2) with gjl we obtain

1
2
(∇kR) + [(∇lR)ul +R(∇lu

l)]uk +Rul(∇luk) = 0. (2.3)

On the other hand, transvecting (2.2) with uj, we have

R(∇kul −∇luk) =
3 − 2n

2(n− 1)
(ul∇kR− uk∇lR). (2.4)
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Transvecting (2.4) again with ul we get

R(∇luk)ul =
3 − 2n

2(n− 1)
(∇kR+ uku

l∇lR).

Substituting this in (2.3), we obtain

−n+ 2
2(n− 1)

(∇kR) +
[

1
2(n− 1)

(∇lR)ul +R(∇lu
l)

]
uk = 0. (2.5)

Transvecting this with uk, we have

R(∇ku
k) = −1

2
(∇kR)uk.

Inserting this in (2.5), we get

∇kR = −(∇lR)uluk. (2.6)

So (2.4) becomes

R(∇kul −∇luk) = 0. (2.7)

Inserting (2.7) and (2.6) in (2.2) we get

R[(∇luj)uk − (∇kuj)ul] = − (∇mR)um

2(n− 1)
(gjluk − gjkul). (2.8)

Transvecting (2.7) with ul we obtain

(∇kuj) = − (∇mR)um

2R(n− 1)
(uluk + gkl). (2.9)

We have obtained a unit time-like torseforming vector field with f = − (∇mR)um

2R(n−1) .
We prove that ωk = fuk is a closed one-form. From (2.6) we have

∇j∇kR = −(∇juk)(∇mR)um − uk∇j((∇mR)um). (2.10)

Writing an analogous equation with indices j and k exchanged, comparing them
we infer uk∇j((∇mR)um) = uj∇k((∇mR)um) and thus

∇j((∇mR)um) = −ujuk∇k((∇mR)um). (2.11)

Now a covariant derivative of f gives

∇jf = −∇j((∇mR)um)
2R(n− 1)

+
(∇mR)um

2(n− 1)
R−2(∇jR) (2.12)

and in view of the previous results and of (2.6) we infer ∇jf = ηuj for a suitable
scalar function η. In this way, we have ∇jωk = ∇kωj and uj is a unit time-like
concircular vector.

Hence by Lemma 2.1, we conclude that if in a Lorentzian manifold M , the
divergence of the conformal curvature tensor vanishes and the Ricci tensor satisfies
(1.2), then there exists a suitable coordinate domain U of M such that on this
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set the space is a GRW space-time. Following arguments similar to those used by
Gȩbarowski in [15, Lemma 7] it is possible to show that for a metric of the form

ds2 = ε(dt)2 + q(t)2g∗αβ(x2 · · ·xn)dxαdxβ ,

where α, β ∈ {2, . . . , n} and ε = ±1 the condition ∇mC
m
jkl = 0 is equivalent to

R∗
αβ = R∗

n−1g
∗
αβ. Thus the fibers of the GRW space-times are Einstein (see also [16],

Lemma 1).

Remark 2.1. Let us give a look at the conformally flat case. From Theorem 1(i)
of [6], it is well-known that the metric ds2 = −(dt)2+q(t)2g∗αβdx

αdxβ is conformally
flat if and only if g∗αβ is a space of constant curvature. Thus we have the following:

Proposition 2.1. Let (M, g) be an n-dimensional (n > 3) conformally flat
Lorentzian manifold. If the Ricci tensor has the form Rij = −Ruiuj then there
exists a suitable coordinate domain U of M such that on this set the space is a
Robertson–Walker space-time.

Corollary 2.1. Let (M, g) be an n-dimensional (n > 3) conformally flat perfect
fluid space-time subjected to the condition p = µ; then there exists a suitable coordi-
nate domain U of M such that on this set the space is a Robertson–Walker space-
time.

Corollary 2.2. Let (M, g) be an n-dimensional (n > 3) conformally flat mass-
less scalar field space-time with time-like gradient ∇jψ; then there exists a suitable
coordinate domain U of M such that on this set the space is a Robertson–Walker
space-time.

We conclude with the following two remarks.

Remark 2.2. We only mention that Einstein GRW space-times were classified in
[3]. In that case, the warping function q is subjected to some restrictions specified
by the following differential equations (reported in [5])

qq′′ =
R

n(n− 1)
q2,

R

n(n− 1)
q2 =

R∗

(n− 2)(n− 1)
+ (q′)2.

Setting q =
√
F it is inferred that

FF ′′ − (F ′)2 − 2R∗

(n− 1)(n− 2)
F = 0.

In [5] it is pointed out that the following functions are solutions of the previous
equation

F (t) = −C1

(
t− c

C1

)2

, C1 < 0,
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F (t) =
c

2

(
e±

d
2 t +

2C1

d2c
e∓

d
2 t

)2

, c > 0, d �= 0,

F (t) = −2C1

c
(1 + sin(ct+ d)),

C1

c
< 0 (2.13)

being c, d some constants and C1 = R∗
(n−1)(n−2) .

Remark 2.3. To prove his theorem Chen puts X = φe1 (see [11], Eq. (3), where
e1 is a unit time-like vector in the direction of X : consequently in the proof he can
choose q = φ for the warping function. In our proof, we have posed Xj = e−σuj
so it is φ = e−σ and we can choose q = e−σ for the warping function. But we
have ωk = fuk = ∇kσ so that f = −uk∇kσ and finally f = uk∇k(ln q). This is
the relation between the warping function q and the function f of the concircular
vector.
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